Tag Archives: thompson

Mobility Patterns in Shared, Autonomous, and Connected Urban Transport

N. Ronald, Z. Navidi, Y. Wang, M. Rigby, S. Jain, R. Kutadinata, R. Thompson, and S. Winter, “Mobility patterns in shared, autonomous, and connected urban transport,” in Disrupting Mobility: Impacts of sharing economy and innovative transportation on cities, ser. Lecture Notes in Mobility, G. Meyer and S. Shaheen, Eds. Springer, 2017.

Abstract:

A number of recent technological breakthroughs promise disrupting urban mobility as we know it. But anticipating such disruption requires valid predictions: disruption implies that predictions cannot simply be extrapolations from a current state. Predictions have to consider the social, economic and spatial context of mobility. This paper studies mechanisms to support evidence-based transport planning in disrupting times. It presents various approaches, mostly based on simulation, to estimate the potential or real impact of the introduction of new paradigms on urban mobility, such as ad-hoc shared forms of transportation, au-tonomously driving electrical vehicles, or IT platforms coordinating and integrating modes of transportation.

Cost-efficient Co-modal Ride-sharing Scheme Through Anticipatory Dynamic Optimisation

R. Kutadinata, R. Thompson, and S. Winter, “Cost-efficient Co-modal Ride-sharing Scheme Through Anticipatory Dynamic Optimisation,” in Proceedings of the 23rd ITS World Congress, 2016.

Abstract:

This paper considers the vehicle routing problem when dealing with a co-modal demand-responsive transport service. The vehicles in the service are shared among two modes of customers, passengers and goods deliveries. In particular, this paper develops a conceptual model in order to explore the performance of such a service with two different optimisation algorithms, namely deterministic re-optimisation and the Multiple Scenario Approach (MSA). An important contribution of this work is the formulation of the co-modality as a pick-up and delivery problem with time windows (PDPTW). In addition, the effect of using various constraints and penalty functions in the optimisation formulation will be investigated. The experiment will be carried out in a vehicle routing simulation developed in MATLAB by using a demand scenario obtained from the Victorian Integrated Survey of Travel and Activity (VISTA) data. In the model, the performance of the algorithms is measured by the operating cost, the number of customers whose time-window constraints are violated, and the average wait and detour time.

Predicting susceptibility to use demand responsive transport using demographic and trip characteristics of the population

S. Jain, N. Ronald, R. Thompson, and S. Winter, “Predicting susceptibility to use demand responsive transport using demographic and trip characteristics of the population”, Travel Behaviour and Society, 6:44-56, 2017

Abstract:

Shared transportation providing point-to-point services on demand, although not an unknown element in urban mobility, has started gaining more presence with the growth of information technology in the transport sector. These forms of transport modes will supplement or compete with the existing public and private transport. Their mixed reception in the past is a matter of concern especially before making investment decisions. To find feasible opportunities of implementation, an estimation of the demand patterns in the target city is desirable. This paper will provide and evaluate a methodology for this estimation that avoids ambivalent and expensive user preference surveys. Demand patterns are caused by the spatial variation of demographic characteristics, and travel behavior over the city. Usability patterns of the proposed services can be learned from the experience of similar services operating elsewhere. Variations of the identified favorable characteristics can be found out in the target city using travel surveys of a population sample. The resulting spatial patterns can be used to find the more favorable areas for implementation of such transport modes. The methodology can be validated by applying it on the existing transport modes in the target city, which will also help in understanding the nature of competition among the proposed and existing transport modes. As the review of operating services is generic, it can be used in conjunction with respective travel surveys in different places. Similarly, a review can be done for any proposed transport mode and provided methodology can be applied for exploring demand patterns.

Best poster at Disrupting Mobility

dm-posters

All 5 posters from our group presented at the summit, while the editor was assessing for the award.

We (Kutadinata, Das, Duffield, Jain, Kotagiri, Kulik, Navidikashani, Rigby, Ronald, Thompson, Wang and Winter, with Kelly and Wallace (Monash University)) have won the Best Poster Award at last week’s Disrupting Mobility, a Global Summit Investigating Sustainable Futures held in Cambridge, MA. Our awarded poster, Shared, Autonomous, Connected and Electric Urban Transport, showed results of various aspects of the ongoing ARC Linkage Project Integrating Mobility on Demand in Urban Transport Infrastructures.

Click on the following list to view the presented posters (as PDF files):

  1. R. Kutadinata, R. D. Das, C. Duffield, S. Jain, R. Kelly, R. Kotagiri, L. Kulik, Z. Navidikashani, M. Rigby, N. Ronald, R. Thompson, M. Wallace, Y. Wang, S. Winter, “Shared, autonomous, connected and electric urban transport.” – the big picture of the Linkage Project
  2. N. Ronald, R. Thompson, R. Kutadinata, S. Winter, “Optimizing shared on-demand passenger and goods mobility.”
  3. Z. Navidikashani, S. Winter, N. Ronald, R. Kutadinata, “Disruptive effects of demand responsive transport systems on mobility.”
  4. Y. Wang, N. Ronald, R. Kutadinata, S. Winter, “How much is trust: The cost and benefit of ridesharing with friends.”
  5. S. Jain, N. Ronald, R. Thompson, R. Kutadinata, S. Winter, “Exploring susceptibility of shared mobility in urban space.”

Disrupting Mobility Summit

The group submitted five abstracts for poster presentations in the Disrupting Mobility Summit: A global summit investigating sustainable futures to be held in November, Cambridge MA. All five were accepted. This summit is an interactive forum for leading executives, government representatives, and academics to discuss sustainable futures of transportation. It will bring together around 350 mobility experts from different continents. The program will tackle current trends in mobility by attracting thought leaders from companies, governments and academia. More details about the summit can be found here.

Here is the list of the posters we will present at the summit:

  1. R. Kutadinata, R. D. Das, C. Duffield, S. Jain, R. Kotagiri, L. Kulik, Z. Navidikashani, M. Rigby, N. Ronald, R. Thompson, M. Wallace, Y. Wang, S. Winter, “Shared, autonomous, connected and electric urban transport.” – the big picture of the Linkage Project
  2. Ronald, R. Thompson, R. Kutadinata, S. Winter, “Optimizing shared on-demand passenger and goods mobility.”
  3. Navidikashani, S. Winter, N. Ronald, R. Kutadinata, “Disruptive effects of demand responsive transport systems on mobility.”
  4. Wang, N. Ronald, R. Kutadinata, S. Winter, “How much is trust: The cost and benefit of ridesharing with friends.”
  5. S. Jain, N. Ronald, R. Thompson, R. Kutadinata, S. Winter, “Exploring susceptibility of shared mobility in urban space.”

Exploring co-modality using on-demand transport systems

N. Ronald, J. Yang, and R. Thompson, “Exploring co-modality using on-demand transport systems,” in Proceedings of the 9th International Conference on City Logistics, Jun. 2015

This paper extended the previous DRT model to include shared trips between passengers and parcels, in this case home-delivered takeaway.

This paper is available from one of the authors.

Simulating Demand-responsive Transportation: A Review of Agent-based Approaches

Nicole Ronald, Russell Thompson, Stephan Winter (2015), Simulating Demand-responsive Transportation: A Review of Agent-based Approaches. Online first (16 Mar 2015), Transport Reviews.

In light of the need to make better use of existing transport infrastructure, demand-responsive transportation (DRT) systems are gaining traction internationally. However, many systems fail due to poor implementation, planning, and marketing. Being able to realistically simulate a system to evaluate its viability before implementation is important. This review investigates the application of agent-based simulation for studying DRT. We identify that existing simulations are strongly focused on the optimisation of trips, usually in favour of the operator, and rarely consider individual preferences and needs. Agent-based simulations, however, permit incorporation of the latter, as well as capture the interactions between operators and customers. Several areas of future research are identified in order to unify future research efforts.

This paper is available from the authors or online at http://www.tandfonline.com/doi/full/10.1080/01441647.2015.1017749. Taylor and Francis have kindly made a limited number of free copies available.

CAITR 2015: hosting and more DRT

Shubham Jain will be attending CAITR (Conference of Australian Institutes of Transport Research) on 12-13 February, hosted by the Melbourne School of Engineering. He will be presenting work-in-progress on his MPhil thesis, focusing on the simulation of demand for demand-responsive transportation.

Mobility and accessibility is a problem for growing cities. To meet this challenge in a sustainable way, taking congestion, fuel consumption, and environmental impacts into consideration, new forms of transport need to be considered. One possible solution is Demand Responsive Transport System (DRTS) which provides flexible point-to-point service on casual requests. It operates at flexible routes and does not have pre-defined schedules. Before deploying a DRTS, we need to simulate the facility and we require to predict travel demand for it. Activity-based micro-simulation models for travel demand explicitly recognise that individuals and households are the actual decision makers, and that travel demand is derived from travellers’ desire to participate in spatially dispersed activities. This research attempts to predict travel demand for DRTS using activity based modeling. This paper presents early research and findings on generating synthetic population of city of Melbourne using PopGen and PopSynWin software and their comparison. Further research would assign travel diaries to synthetic population using Victorian Integrated Survey of Travel and Activity (VISTA) data and predict mode shift to DRTS.

Joann Yang, a research assistant in Infrastructure Engineering at the University of Melbourne, will also present a literature review on on-demand freight transportation. This is part of another paper in preparation for the upcoming City Logistics conference, which uses the demand-responsive transport simulations developed as part of the iMoD project to explore on-demand, shared passenger/goods travel.

Note that both Russell Thompson and Nicole Ronald are involved in organising CAITR, so will be present as well. We are looking forward to welcoming all the participating students, researchers, and practitioners from around Australia!

A comparison of constrained and ad-hoc demand-responsive transportation systems

Ronald, N., Thompson, R.G., and Winter, S. A comparison of constrained and ad-hoc demand-responsive transportation systems, Proceedings of the 94th Annual Meeting of the Transportation Research Board, Washington, DC, January 2015.

Planning public transport services for areas of low population density is important to enable those without convenient travel options to travel. In these areas, transit vehicles frequently travel with low numbers or even no passengers on board, therefore incurring more cost to the transport providers. Demand-responsive transportation (DRT) services are a potential efficient mobility solution to this problem.

The choice of DRT scheme is important as different types of schemes might produce different performances in the same area with the same demand. While many DRT schemes have some constraints, for example, a fixed route or a fixed time, these impose constraints on users who are already constrained, for example, due to lack of access to a car or limited times to undertake activities. Removing the fixed constraint on time leads to evaluating the performance of an ad-hoc system.

matsim-ymThe aim of this paper is to investigate the change in performance between two different DRT schemes — a fixed-time but flexible route scheme and a completely ad-hoc scheme — using MATSim, a large-scale agent-based transport simulation, and real data from an existing fixed-time DRT service in rural Victoria, Australia. Experimentation showed that the schemes produced different outcomes for the operator and passengers, however the optimization algorithm is less important in areas of low demand. Higher levels of demand lead to extensive vehicle travel for an ad-hoc service, while altering the headways between fixed-time services could achieve a middle ground for operators and passengers.

This work is the first step towards developing a decision-support tool to evaluate different DRT schemes, in particular integrated with other modes of transport.

Please email the authors for a copy.

Internship graduation project: estimating demand for DRT

chenhao

On 4 June 2014, Chenhao Fan, a final-year student from Southeast University, Nanjing, China, presented his graduation project on estimating demand for DRT services.

Chenhao has spent four months in Melbourne working with Assoc Prof Russell Thompson and Dr Nicole Ronald, as well as data and policy experts from the Department of Transport, Planning and Local Infrastructure, State Government of Victoria. He analysed VISTA and ABS census data to obtain preliminary estimates of trips per household.